Welcome To Dankang BioHealth !

Peptide Industry Contributing Authors Recognition

Jul 02,2024

Dr. Patrick Gunning

Dr. Patrick Gunning is a notable figure in the field of peptide science, specializing in the design and synthesis of therapeutic peptides. With over 20 years of experience, Dr. Gunning has played a crucial role in enhancing our understanding of peptide-based drug design, especially in targeting protein-protein interactions. His work not only underpins the scientific basis of peptide use in pharmaceutical applications but also sets the stage for potential advancements in drug development, particularly for treating cancer and inflammatory diseases.

Dr. Gunning has been instrumental in several groundbreaking studies, notably:

  • Targeting Protein-Protein Interactions with Peptides – A comprehensive analysis of peptide strategies to modulate protein interactions, recognized for its depth and citations in the field of medicinal chemistry.
  • Design and Development of Cyclized Peptides – Published in the Journal of Medicinal Chemistry, this study explores innovative methods to improve peptide stability for therapeutic use.

Dr. Gunning has been acknowledged with prestigious awards such as the E.W.R. Steacie Fellowship from the National Science and Engineering Research Council of Canada, underscoring his authoritative contributions to peptide research.

Dr. Helen M. Burt

Dr. Helen M. Burt is a leading expert in the development and application of peptide-based delivery systems in medicine. Her pioneering work in the integration of peptides within drug delivery platforms is widely recognized as a critical advancement in pharmaceutical sciences. With a career spanning more than three decades, Dr. Burt has laid the groundwork for numerous innovations in targeted peptide delivery systems that improve therapeutic outcomes and patient safety.

Key publications by Dr. Burt include:

  • Peptide-Enabled Targeting of Delivery Systems – A significant contribution detailing the use of peptides to enhance the specificity and efficiency of drug delivery systems, published in Advanced Drug Delivery Reviews.
  • Novel Uses for Peptides in Pharmaceuticals – This article focuses on the innovative deployment of peptides within pharmaceutical formulations, highlighting substantive advances in therapeutic delivery.

Dr. Burt’s influential research, characterized by its creativity and impact, has earned her numerous accolades, including the GSK Chair in Pharmaceutical Sciences at the University of British Columbia. Her work exemplifies the trustworthiness and expert knowledge she contributes to the peptide research community.

References

Ahrens, V. M., Bellmann-Sickert, K., & Beck-Sickinger, A. G. (2012a). Peptides and peptide conjugates: therapeutics on the upward path. Future Medicinal Chemistry4(12), 1567–1586. https://doi.org/10.4155/fmc.12.76

Ahrens, V. M., Bellmann-Sickert, K., & Beck-Sickinger, A. G. (2012b). Peptides and peptide conjugates: therapeutics on the upward path. Future Medicinal Chemistry4(12), 1567–1586. https://doi.org/10.4155/fmc.12.76

Amiche, M., Ladram, A., & Nicolas, P. (2008). A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides29(11), 2074–2082. https://doi.org/10.1016/j.peptides.2008.06.017

Chatterjee, J., Laufer, B., & Kessler, H. (2012). Synthesis of N-methylated cyclic peptides. Nature Protocols7(3), 432–444. https://doi.org/10.1038/nprot.2011.450

Erak, M., Bellmann-Sickert, K., Els-Heindl, S., & Beck-Sickinger, A. G. (2018). Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics. Bioorganic & Medicinal Chemistry26(10), 2759–2765. https://doi.org/10.1016/j.bmc.2018.01.012

Ermert, P., Luther, A., Zbinden, P., & Obrecht, D. (2019). Frontier between cyclic peptides and macrocycles. Methods in Molecular Biology, 147–202. https://doi.org/10.1007/978-1-4939-9504-2_9

Gentilucci, L., Tosi, P., Bauer, A., & De Marco, R. (2016). Modern tools for the chemical ligation and synthesis of modified peptides and proteins. Future Medicinal Chemistry8(18), 2287–2304. https://doi.org/10.4155/fmc-2016-0175

George, A. L., Foreman, R. E., Sayda, M. H., Reimann, F., Gribble, F. M., & Kay, R. G. (2023). Rapid and Quantitative Enrichment of Peptides from Plasma for Mass Spectrometric Analysis. Methods in Molecular Biology, 477–488. https://doi.org/10.1007/978-1-0716-2978-9_28

Goto, Y., & Suga, H. (2023). Ribosomal synthesis of peptides bearing noncanonical backbone structures via chemical posttranslational modifications. Methods in Molecular Biology, 255–266. https://doi.org/10.1007/978-1-0716-3214-7_13

Hansen, S., Arafiles, J. V. V., Ochtrop, P., & Hackenberger, C. P. R. (2022). Modular solid-phase synthesis of electrophilic cysteine-selective ethynyl-phosphonamidate peptides. Chemical Communications58(60), 8388–8391. https://doi.org/10.1039/d2cc02379b

Ilangala, A. B., Lechanteur, A., Fillet, M., & Piel, G. (2021). Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. European Journal of Pharmaceutics and Biopharmaceutics167, 140–158. https://doi.org/10.1016/j.ejpb.2021.07.010

John, H., Walden, M., Sch�Fer, S., Genz, S., & Forssmann, W. (2004). Analytical procedures for quantification of peptides in pharmaceutical research by liquid chromatography?mass spectrometry. Analytical and Bioanalytical Chemistry378(4), 883–897. https://doi.org/10.1007/s00216-003-2298-y

Kabelka, I., & Vácha, R. (2021). Advances in molecular understanding of Α-Helical Membrane-Active peptides. Accounts of Chemical Research54(9), 2196–2204. https://doi.org/10.1021/acs.accounts.1c00047

Kobayashi, M., Fujita, K., Matsuda, K., & Wakimoto, T. (2023). Streamlined chemoenzymatic synthesis of cyclic peptides by non-ribosomal peptide cyclases. Journal of the American Chemical Society145(6), 3270–3275. https://doi.org/10.1021/jacs.2c11082

Kuhfeld, R. F., Eshpari, H., Atamer, Z., & Dallas, D. C. (2023). A comprehensive database of cheese-derived bitter peptides and correlation to their physical properties. Critical Reviews in Food Science and Nutrition, 1–15. https://doi.org/10.1080/10408398.2023.2220792

Meloni, B. P., Milani, D., Edwards, A. B., Anderton, R. S., Doig, R. L. O., Fitzgerald, M., Palmer, T. N., & Knuckey, N. W. (2015). Neuroprotective peptides fused to arginine-rich cell penetrating peptides: Neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacology & Therapeutics153, 36–54. https://doi.org/10.1016/j.pharmthera.2015.06.002

Moran, T. H. (2009). Gut peptides in the control of food intake. International Journal of Obesity33(S1), S7–S10. https://doi.org/10.1038/ijo.2009.9

Morra, G., Meli, M., & Colombo, G. (2008). Molecular dynamics Simulations of proteins and peptides: From folding to drug design. Current Protein and Peptide Science9(2), 181–196. https://doi.org/10.2174/138920308783955234

Moruz, L., & Käll, L. (2016). Peptide retention time prediction. Mass Spectrometry Reviews36(5), 615–623. https://doi.org/10.1002/mas.21488

Noble, J. E., Vila-Gómez, P., Rey, S., Dondi, C., Briones, A., Aggarwal, P., Hoose, A., Baran, M., & Ryadnov, M. G. (2023). Folding-Mediated DNA delivery by Α-Helical amphipathic peptides. ACS Biomaterials Science & Engineering9(5), 2584–2595. https://doi.org/10.1021/acsbiomaterials.3c00221

Sawada, T., Oyama, R., Tanaka, M., & Serizawa, T. (2020). Discovery of Surfactant-Like Peptides from a Phage-Displayed Peptide Library. Viruses12(12), 1442. https://doi.org/10.3390/v12121442

Tasdemiroglu, Y., Gourdie, R. G., & He, J. (2022). In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. European Journal of Pharmacology932, 175192. https://doi.org/10.1016/j.ejphar.2022.175192

Van Regenmortel, M. (2001). Antigenicity and immunogenicity of synthetic peptides. Biologicals29(3–4), 209–213. https://doi.org/10.1006/biol.2001.0308

Wang, Q., Wang, F., Li, R., Wang, P., Yuan, R., Liu, D., Liu, Y., Luan, Y., Wang, C., & Dong, S. (2023). Fine tuning the properties of stapled peptides by stereogenic Α‐Amino acid bridges. Chemistry – a European Journal29(29). https://doi.org/10.1002/chem.202203624

Yuan, Y. (2020). Mechanisms inspired targeting peptides. Advances in Experimental Medicine and Biology, 531–546. https://doi.org/10.1007/978-981-15-3266-5_21


Share:
Search
Blog
Latest Products
SS·31
SS·31
$92
Snap8
Snap8
$48
Whatsapp
Email

Skin protection&delay aging

SS·31
2025-11-10